martes, 9 de marzo de 2021

Fwd: Cuaderno de Cultura Científica: Fusión nuclear en el Sol




Cuaderno de Cultura Científica: Fusión nuclear en el Sol


Fusión nuclear en el Sol

Posted: 09 Mar 2021 02:59 AM PST

Foto: NASA/JPL-Caltech/GSFC

Las reacciones de fusión nuclear son bastante comunes en la naturaleza, aunque no en la Tierra. Son la fuente de la energía generada por el Sol y los miles de millones de estrellas en todo el Universo. En cierto sentido se puede decir que la energía de fusión es la principal fuente de energía de la naturaleza [1]. En las estrellas el confinamiento del plasma lo logra la atracción gravitacional.

Uno de los aspectos más fascinantes de la física nuclear es el estudio de las reacciones de fusión en los diferentes tipos de estrellas. Estas reacciones son las que terminarán formando muchos de los elementos químicos [2]. El Sol es un buen ejemplo.

En el Sol, el proceso de fusión da como resultado la producción de un núcleo de helio a partir de cuatro protones. El resultado neto de las reacciones que tienen lugar se puede escribir como

donde +10e es un «anti-electrón», también conocido como positrón. Esta reacción neta no tiene lugar en un solo paso, sino que se puede llegar a ella a través de diferentes conjuntos de reacciones cuyos resultados netos se resumen en esta ecuación. En cualquier caso la cantidad total de energía liberada es siempre la misma: 26 MeV. La fusión de cuatro protones para formar un núcleo de helio es la principal fuente de energía del Sol.

El hidrógeno y el helio juntos constituyen alrededor del 99% de la masa del Sol, con aproximadamente el doble de H que de He. Afortunadamente, hay suficiente hidrógeno como para que el Sol siga suministrando energía durante varios miles de millones de años más.

¿Mediante cuál de los varios conjuntos posibles de reacciones tiene lugar la transformación del hidrógeno en helio? Tenemos que descartar el proceso directo de colisión de cuatro protones para formar un núcleo de helio no porque sea imposible, sino porque la probabilidad de una reacción así en las condiciones del interior del Sol es demasiado baja. Es decir, puede suceder, pero no con la suficiente frecuencia para generar la cantidad de energía liberada que se observa.

Un conjunto de reacciones más probable es el siguiente: cuando la temperatura es de aproximadamente 107 K, las energías cinéticas son lo suficientemente grandes como para superar la repulsión eléctrica entre los protones y se produce la fusión de dos protones. La reacción nuclear da como resultado un deuterón (hidrógeno-2), un positrón y un neutrino. Tan pronto como se forma el deuterón, reacciona con otro protón, dando como resultado helio-3 y un rayo gamma. Los núcleos de helio-3 se fusionan entre sí, formando partículas alfa y dos protones. En cada una de estas reacciones, se libera energía, lo que da como resultado 26 MeV para el ciclo completo de cuatro protones que dan lugar a un núcleo de helio.

La velocidad de la reacción depende del número de núcleos por unidad de volumen y de la temperatura. Cuanto mayor sea la temperatura, más rápido será el movimiento térmico de las partículas y más frecuentes y enérgicas serán las colisiones. A la temperatura del interior del Sol, que se ha estimado que está entre 10 y 20 millones de grados, las energías cinéticas resultantes del movimiento térmico están en entorno de 1 keV.

Notas:

[1] Decimos en cierto sentido porque existen otras formas de energía, como la energía oscura o, incluso, la atracción gravitatoria de los agujeros negros. Pero no las consideramos.

[2] De aquí viene la expresión "somos polvo de estrellas", porque los elementos que nos componen se crearon en su mayoría por procesos de fusión en las distintas fases de la vida y muerte de diferentes tipos de estrellas.

[3] Quizás convenga comentar que las reacciones químicas no pueden proporcionar energía a velocidades lo suficientemente grandes (o durante un tiempo lo suficientemente largo) como para explicar la producción de energía en el Sol. Las reacciones de fusión nuclear sí lo logran fácilmente.

Sobre el autor: César Tomé López es divulgador científico y editor de Mapping Ignorance

El artículo Fusión nuclear en el Sol se ha escrito en Cuaderno de Cultura Científica.

This posting includes an audio/video/photo media file: Download Now


viernes, 5 de marzo de 2021

Fwd: Cuaderno de Cultura Científica: El hidrógeno, clave para gestionar las redes eléctricas del futuro


Cuaderno de Cultura Científica: El hidrógeno, clave para gestionar las redes eléctricas del futuro


El hidrógeno, clave para gestionar las redes eléctricas del futuro

Posted: 04 Mar 2021 02:59 AM PST

María Retuerto Millán, Miguel Antonio Peña y Sergio Rojas Muñoz

Petrmalinak/Shutterstock

 

Es una verdad universalmente admitida que las fuentes energéticas de la humanidad deben ser de carácter renovable. Lo que nos conduce a un uso creciente de las energías eólica y solar fotovoltaica. Estas últimas son actualmente las más desarrolladas y las más competitivas respecto a otras alternativas no sostenibles.

La forma práctica de usar estas fuentes de energía es su transformación en electricidad. Por ello, cualquier país suficientemente avanzado tenderá a la electrificación del sistema energético en los próximos años.

Sin embargo, la gestión de una red eléctrica basada en energías renovables no es sencilla, dado su carácter intermitente. No solo hay que gestionar el ciclo día-noche de la solar fotovoltaica, sino también los ciclos estacionales verano-invierno.

Es necesario almacenar la energía en periodos en los que existan excedentes. De esta forma, se podrán usar en momentos en los que la disponibilidad de energía es menor (menos viento o menos radiación solar en invierno).

Existen diferentes métodos de almacenamiento de energía eléctrica, como las baterías o el bombeo hidráulico. La mayor parte de ellos no permiten cubrir la demanda necesaria o no permiten el almacenamiento a largo plazo de grandes cantidades de energía. Pero existe un vector energético que sí permite ser almacenado y distribuido cumpliendo estos requisitos: el hidrógeno.

Producción y almacenamiento del hidrógeno

El proceso de producción de hidrógeno a partir de la energía eléctrica es conocido como electrolisis. Se realiza aplicando corriente eléctrica al agua, separando así sus elementos: hidrógeno y oxígeno. De esta forma, la electricidad renovable producida se almacena en forma de hidrógeno.

Cuando es necesario disponer de nuevo de electricidad, es posible realizar el proceso inverso: alimentando una pila de combustible con el hidrógeno almacenado se obtiene la electricidad que requerimos, produciéndose también agua.

Existen diversas formas de almacenar hidrógeno, pero la más utilizada actualmente son los depósitos a alta presión. La presión estándar de almacenamiento es 700 bar (unas 700 veces la presión atmosférica). Su uso es seguro gracias a los avances de los últimos años en tecnología de materiales. Podemos almacenar grandes cantidades de energía durante largos periodos de tiempo y, por tanto, gestionar la red eléctrica.

Más allá de la electricidad

Existen otros usos de este hidrógeno renovable diferentes de la electricidad, como los de empresas que requieren calor industrial de calidad. Incluso es posible usar la red de distribución de gas natural inyectando en ella gas de origen renovable.

Esquema de almacenaje y distribución directa (línea azul) o a través de la red de gas natural (línea roja) de hidrógeno renovable. Fuente: International Renewable Energy Agency (IRENA)

La eficiencia de los electrolizadores y las pilas de combustible suele ser alta, entre el 70 y 90 %, dependiendo de la tecnología usada. El uso directo de la electricidad renovable no tendría ninguna pérdida. Pero, si es necesario almacenarla, la tecnología del hidrógeno resulta ser la más efectiva.

Aplicaciones en transporte

Las primeras aplicaciones del hidrógeno como vector energético se están produciendo en el sector del transporte. Desde 2015 existen en el mercado vehículos eléctricos, como el Toyota Mirai o el Hyundai Nexo.

En los coches, la electricidad se produce en una pila de combustible alimentada por un depósito de hidrógeno. El repostaje del hidrógeno se realiza en una estación se servicio de forma muy similar a como se realiza con otros combustibles. Un tiempo de repostaje de entre 3 y 5 minutos permite una autonomía cercana a los 700 km.

Países como Japón (con más de 100 estaciones de servicio de hidrógeno) o Alemania (con 50 estaciones de servicio) se encuentran a la vanguardia de la tecnología.

Recarga del depósito de un Hyundai NEXO. Fuente: Hyundai

Aunque en Europa se considera una tecnología prioritaria desde hace unos años, en España no existe aún ninguna estación de servicio de hidrógeno abierta al público de forma similar a como existen en otros países europeos. Desde la Asociación Española del Hidrógeno estamos trabajando para que esta situación cambie.

¿El futuro ya está aquí?

La tecnología ha llegado a su desarrollo comercial en esta última década. Pero los próximos años traerán las mejoras necesarias para que su expansión sea posible.

El precio actual de la producción de hidrógeno se sitúa en unos 8 €/kg y el depósito de los vehículos comerciales contiene unos 6 kg de hidrógeno. Esto supone que el precio de llenar un depósito es similar al de la gasolina o el diésel. Sin embargo, el coste del hidrógeno disminuirá aún más en los próximos años.

En los Juegos Olímpicos de 2020 en Tokyo, la organización ha apostado por un transporte eléctrico basado en el hidrógeno. Será un gran impulso para esta tecnología y un incentivo para que los costes sean aún más bajos.

También se esperan mejoras en la tecnología de la electrolisis del agua y en la aplicación práctica de otros procesos nuevos, como la fotólisis directa del agua con luz solar.

En busca de materiales alternativos

Las nuevas tecnologías suelen generar un problema de aumento de la demanda de materiales estratégicos. Éstos son materiales escasos o que se producen en pocos lugares en el mundo. En el caso de los coches eléctricos de baterías, el litio y el cobalto son los materiales estratégicos. Para los electrolizadores y las pilas de combustible, es el platino. Aun así, la cantidad necesaria de platino no es muy superior a la de metales nobles de los tubos de escape de los vehículos de combustión interna.

Los grupos de investigación que trabajamos en estas tecnologías tenemos en cuenta este problema. Estamos empezando a tener éxito en el desarrollo de materiales alternativos al platino que sean abundantes y sostenibles. Muy probablemente, los sistemas electroquímicos de los vehículos eléctricos del futuro serán muy diferentes a los actuales.

Una última consideración: la mayor parte del hidrógeno producido actualmente se obtiene a partir de combustibles fósiles. Esto no encaja en el esquema de sostenibilidad descrito en este artículo. Pero en los próximos años veremos cómo se usarán cada vez más las fuentes de energía renovables. El hidrógeno tendrá un papel fundamental en esta transición.The Conversation

Sobre los autores: María Retuerto Millán es investigadora contratada, y Miguel Antonio Peña y Sergio Rojas Muñoz investigadores científicos, en el Instituto de Catálisis y Petroleoquímica (ICP-CSIC)

Este artículo fue publicado originalmente en The Conversation. Artículo original.

El artículo El hidrógeno, clave para gestionar las redes eléctricas del futuro se ha escrito en Cuaderno de Cultura Científica.

This posting includes an audio/video/photo media file: Download Now

Y